Finden Sie schnell hybridheizung gas wärmepumpe kosten für Ihr Unternehmen: 292 Ergebnisse

Aktivkohle-Filteranlagen - H2S-500 K

Aktivkohle-Filteranlagen - H2S-500 K

Aktivkohle-Filteranlage zur vollständigen Entfernung von Schwefelwasserstoff (H2S) aus Biogas Aktivkohle-Filteranlage für den Einsatz an Biogasanlagen bis 750 kWel, bzw. 400 Nm3. Behälter aus HDPE Ø: 1200 mm Höhe: 2500 mm Mannloch zur Befüllung von Oben Mannloch zur Entleerung seitlich inkl. Wärmetauscher mit Pumpe zur Erwärmung des Biogases um eine Kondensation von Wasser auf der Aktivkohle zu verhindern, Material: PP, zum Anschluss an den Kühlwasserkreislauf des BHKW (70 - 90 °C) inkl. Bypass-Verrohrung der Filteranlage aus PVC-U, DN 125, bzw. DN 150 inkl. Membranpumpe zur Lufteindüsung in das Rohgas zur Erhöhung des Sauerstoffgehaltes inkl. 500 kg Aktivkohle-Befüllung
Die leistungsstarke Drehkolbenpumpe VX230

Die leistungsstarke Drehkolbenpumpe VX230

Für viele Förderaufgaben in Biogasanlagen stellen die Drehkolbenpumpen der VX-Serie die ideale Lösung dar. Die HiFlo®-Kolben sorgen dabei für pulsationsfreies und vibrationsarmes Pumpen. Die Drehkolbenpumpen der VX-Serie überzeugen auf vielen Biogasanlagen als zentrale Pumpe. Den Wirtschaftsdünger aus Gruben saugen sie an und evakuieren dabei Luft aus leergelaufenen Rohrleitungen. Vogelsang Drehkolbenpumpen sind fremdkörperunempfindlich dank InjectionSystem und dem großen freien Kugeldurchgang. Auch Rezirkulat, Biosuspension oder dünnflüssiger Gärrest werden problemlos z. B. vom Fermenter in den Nachgärer und umgekehrt gefördert. Der geringe Platzbedarf der VX-Serie überzeugt und dank dem QuickService-Konzept lassen sie sich schnell und einfach vor Ort warten bzw. reparieren. Die Baureihe VX230 steht für hohe Förderleistung auf minimalem Raum. Die Pumpe bietet Leistungen bis zu 1.234 m³/h gegen Drücken bis zu 12 bar. Modell: Die leistungsstarke Drehkolbenpumpe max. Fördermenge: 1234 m3/h Segment: Biogas
Erneuerung der Heizungsanlage

Erneuerung der Heizungsanlage

Der Altkessel mit einem Normnutzungsgrad von ca. 85% und einer Abgastemperatur von ca. 150°C war nicht mehr zeitgerecht. Ersetzt wurde dieser Kessel durch moderne Brennwerttechnik. Nun erwärmt ein wandhängendes Brennwertgerät von Junkers Typ ZBR 65-1 das Haus. Mit einer stufenlosen Leistungsspanne von 13-65kW und einer maximalen Abgastemperatur von 65°C arbeitet er effizient und leise. Ergänzt wurde die Anlage mit einer Energiesparpumpe von Grundfos mit der Effizienzklasse A. Mit einer jährlichen Stromersparnis von ca. 85.- Euro hat sich diese Pumpe nach bereits drei Jahren selbst finanziert. Gasbrennwertgerät Buderus GB 162-80, 80kw Gesamtleistung für einen Wohnblock mit 12 Einheiten 2x Gas-Niedertemperaturkessel mit je 450 kW Leistung für ein Produktionsgebäude in Glinde bei Hamburg Heizungsverteilung mit drei gemischten Heizkreisen
Thermoelektrischer Gasgenerator (TGG)

Thermoelektrischer Gasgenerator (TGG)

Vorteile: Zuverlässigkeit. Lange Lebensdauer ohne Wartung in allen Klimazonen. TGG kann als Wärmequelle für Luftheizung dienen Der thermoelektrische Gasgenerator (TGG) ist eine Quelle elektrischer Energie, die in dem thermoelektrischen Wandler erzeugt wird, der auf Basis des Seebeck-Effekts durch direkte Wärmeumwandlung mit Hilfe von Brennstoffverbrennung funktioniert. Die TGG sind für eine konstante autonome Stromversorgung von radioelektronischen Anlagekomplexen und Kommunikationssystemen, den katodischen Schutz, die lineare Telemechanik und Automatik bestimmt, die sich vor allem an abgelegenen und nicht zu wartenden Objekten von Gasleitungen befinden. Ebenfalls dort, wo es keine Standardstromquellen gibt, jedoch Erdgas zur Verfügung steht.
Hochdruckdichtsatz SL-IV / -V, Hybrid

Hochdruckdichtsatz SL-IV / -V, Hybrid

Hochdruckdichtsatz SL-IV / -V, Hybrid Artikelnr.: IK2001 OEM# 20422243
Gas-Messtechnik für Biogas-Anlagen Teil 2: Raumluftüberwachung PDF

Gas-Messtechnik für Biogas-Anlagen Teil 2: Raumluftüberwachung PDF

Einleitung Bei Biogasanlagen kommen der Gasmesstechnik zwei verschiedene Aufgaben zu. Dies ist zum einen die Analyse der Zusammensetzung des Biogases bevor es der Verwertung zugeführt wird, zum anderen ist dies das Erkennen von Gesundheitsgefahren durch ungewollt freigesetzte Biogase, z. B. Leckagen. Beide Messaufgaben stellen unterschiedliche Anforderungen und bedingen den Einsatz speziell auf sie zugeschnittener Messtechnik. In diesem Teil 2 werden die Anforderungen und Konzepte für Raumluftmessungen zur Leckageerkennung. vorgestellt.1 Welche Gase werden gemessen? Mit den Haupt-Komponenten im Biogasgemisch Methan (CH4), Kohlendioxid (CO2) und Schwefelwasserstoff (H2S) sind verschiedene Gefährdungen verbunden. Methan kann als brennbares Gas zusammen mit Luft explosionsfähige Gemische bilden, wenn die Konzentration die so genannte untere Explosionsgrenze (UEG) übersteigt. Die Explosionsund Brandgefahren bedrohen nicht nur Gesundheit des Personals, sondern auch die Anlage selbst. Die UEG liegt für Methan bei 4,4 Vol.-%. Der Konzentration wird in % der UEG angegeben. Der Messbereich beträgt 100 % UEG. Die Alarmschwellen betragen üblicherweise 20 % UEG (Voralarm) und 40 % UEG (Hauptalarm). Die Gefahren durch toxische Gase sind durch tragische Schwefelwasserstoff-Unfälle ins Bewusstsein gerückt. Schwefelwasserstoff kann b
Gas-/Biogasheizung – platzsparende Heizmöglichkeit

Gas-/Biogasheizung – platzsparende Heizmöglichkeit

Gasheizungen mit moderner Technologie sind sehr effizient und geben kaum ungenutzte Energie an die Umgebung ab. Dabei zählen Gasheizungen ausserdem zu den kompaktesten Heizungssystemen und lassen sich auch unter beengten Bedingungen oftmals problemlos einbauen. Vorteile Wenig Platzbedarf Keine Lagerhaltung wie z.B. bei Öl- oder Pelletheizung Monatliche Abschlagszahlungen Biogasgewinnung in der Schweiz (optional bestellbar) Nachteile Fossiler Brennstoff Hoher CO -Ausstoss Einsatzort Für alle Gebäudearten geeignet Eine Gasheizung kann auch mit Biogas betrieben werden. Das Biogas entsteht beim Vergärungsprozess von Biomasse und zählt zu den regenerativen Energiequellen.
IVA500 – Verbrauchssensor zur Verbrauchsmessung von Druckluft und Gasen

IVA500 – Verbrauchssensor zur Verbrauchsmessung von Druckluft und Gasen

Messung des Massenstroms, direkte Ausgabe des Normvolumenstroms Hochgenau bei kleinen wie auch großen Durchflüssen Druck- und temperaturkompensiert durch das thermische Massenstromprinzip Schnelle und einfache Installation über einen handelsüblichen ½” Kugelhahn Keine bewegten Teile, somit wartungsarm Verschwindend geringer Druckverlust da verschwindend geringe Blockade des Durchmessers Einsetzbar für Druckluft und nicht korrosive Gase wie Stickstoff, Sauerstoff, Argon, Helium, u.v.m. Erfassen und reduzieren Sie Ihre Energiekosten, senken Sie Ihre CO2-Emissionen und steigern Sie ihre Nachhaltigkeit. Mit dem IVA500 überwachen Sie Ihre Verbräuche und analysieren Leckageströme mit nur einem Messgerät. Aufgrund seiner Bauart auch ideal für mobile Messungen einsetzbar. Technische Details 04…20 mA, Pulse und eine Modbus-RTU (RS 485) Schnittstelle serienmäßig, optionale Schnittstellen wie Modbus TCP (Ethernet), PoE, M-Bus Optional: Bi-Direktionale Messung Druckbereich bis 50 bar Temperaturbereich bis 110°C Schutzklasse IP65 Integriertes Display zur Anzeige der Messwerte Von DN15 bis DN1000 einsetzbar, größere Durchmesser auf Anfrage Einfacher Einbau unter Druck Einstellungen über die Tasten des Displays änderbar Hauptzählerstand kann über das Display zurückgesetzt werden Für Geschwindigkeiten bis 224 Nm/s Hochpräzise mit einer Genauigkeit von ± 1,5% oder ± 1% vom Messwert – sowie ± 0,3 % vom Endwert
Kalibrierung und Service für Durchflussmesser für Gase und Flüssigkeiten

Kalibrierung und Service für Durchflussmesser für Gase und Flüssigkeiten

Hochgenaue Kalibrierung von Durchflussmessern für Flüssigkeiten, unabhängig von Hersteller und Messprinzip, auf hochgenauen Primärkalibratoren. Lassen Sie Kalibrierung und Service Ihrer Durchflussmesser vom Durchflussspezialisten durchführen! TrigasFI verfügt über ein Durchflusslabor für die Kalibrierung von Flüssigkeiten und ein separates Gaslabor. Wir betreiben ca. 20 Durchflusskalibriergeräte mit unterschiedlichen Messprinzipien. Aus diesem Grund haben wir die Flexibilität, unsere Arbeit an Ihre genauen Bedürfnisse anzupassen. Wir sind zum Beispiel eines der wenigen Durchflusslabore, die mit echten Flüssigkeiten kalibrieren können. Ebenso kalibrieren wir auch mit Echtgasen. Dadurch stellen wir korrekte Messergebnisse unter tatsächlichen Betriebsbedingungen sicher. TrigasFI ist ISO 17025 akkreditiert. Demzufolge können wir DAkkS-zertifizierte Kalibrierungen für praktisch alle in unserem Labor durchgeführten Leistungen anbieten. Zudem sind wir nach ISO 9001 akkreditiert.
Im Niedrigenergiehaus sinken deutlich die Heizkosten

Im Niedrigenergiehaus sinken deutlich die Heizkosten

Nutzen Sie unsere Kreativität und Erfahrung, wenn Sie ein Mehrfamilienhaus umbauen möchten! Sie können mit einem Minimum an Energiekosten rechnen, denn wir können Ihr Mehrfamilienhaus in ein Niedrigenergiehaus nach KfW- Standard umbauen und dabei helle und freundliche Wohnräume ganz individuell für modernes Wohnen herrichten!
Elektropumpen

Elektropumpen

Unsere Elektropumpen sind die ideale Lösung für anspruchsvolle Hydraulikanwendungen. Sie bieten eine hohe Leistung und sind in verschiedenen Ausführungen erhältlich. Mit einer robusten Konstruktion und hochwertigen Materialien gewährleisten unsere Elektropumpen eine lange Lebensdauer und zuverlässige Leistung. Ob für den Einsatz in Hydraulikpressen, Hebesystemen oder anderen industriellen Anwendungen – unsere Elektropumpen bieten höchste Präzision und Effizienz. Vertrauen Sie auf unsere Expertise und profitieren Sie von der hohen Qualität und Zuverlässigkeit unserer Produkte. Wir bieten Ihnen maßgeschneiderte Lösungen, die perfekt auf Ihre spezifischen Anforderungen abgestimmt sind.
Fasspumpe - Säuren

Fasspumpe - Säuren

Die Fasspumpe ist geeignet für korrosive, wässrige bis leicht viskose Medien. Perfekt für die Entnahme oder Umfüllen von Säuren geeignet. * Medienbeipiele: Salzsäure, Akkusäure, Eisen-III-Chlorid, Phosphorsäure, Chromsäure und Zitronensäure etc. * Pumpwerk ausgestattet mit Lutz Original Handrad * Zum Ab- oder umfüllen von Ölen wie Rapsöl und Pflanzenöl geeignet Eigenschaften & Vorteile * Wahlweise mit Elektro- oder Druckluftantrieb * Keine Schmierstoffe und damit keine Verunreinigung des Fördermediums durch Schmierstoffe * Optimierte Fassentleerung * Universell beständige PTFE-Wellenlagerung * Wartung ohne Spezialwerkzeuge * Dichtmodule der dichtungslosen (DL) Pumpe austauschbar Lutz | Jesco Fasspumpe - Säuren 0205-135
Oil-Gas Systems

Oil-Gas Systems

Die Oil-Gas Systems von Alumina Systems umfassen vakuumdichte Spezial- und Hochdruck-Durchführungen, die in der Öl- und Gasförderung eingesetzt werden. Diese Systeme sind besonders wichtig für Ölbohr-Plattformen, wo sie unter extremen Bedingungen zuverlässig arbeiten müssen. Die hochwertigen keramisch-metallischen Verbundbauteile bieten eine hohe Beständigkeit gegen Druck und Temperatur, was ihre Langlebigkeit und Effizienz erhöht. Diese Lösungen sind entscheidend für die Sicherheit und Effizienz in der Öl- und Gasindustrie und tragen zur Optimierung der Produktionsprozesse bei.
Bivalente Heizung – Kombination von Gas-/Ölheizung mit energieeffizienten Heizanlage

Bivalente Heizung – Kombination von Gas-/Ölheizung mit energieeffizienten Heizanlage

Bei dieser Lösung handelt es sich um ein kombiniertes Heizsystem mit Zukunftspotenzial. Es deckt die Grundlast mit erneuerbaren Energien und bei Spitzenlasten mit fossilen Energien ab. Der Grundlasterzeuger muss mindestens 25% der Spitzenlast abdecken. Mögliche Beispiele für den Grundlast-Wärmeerzeuger sind eine Wärmepumpe oder ein Pelletkessel. Als Spitzenlast können Öl- oder Gasheizungen dienen. Ein großer Vorteil dieser Lösung ist die Reduktion der CO2-Emissionen und niedrigere Heizkosten durch die Kombination von fossilen Energieträgern mit erneuerbaren Energiequellen. Allerdings erfordert der Einsatz einzelner Geräte eine aufwändige Hydraulik und Regelung. Dieses System eignet sich für Einfamilienhäuser sowie große Objekte mit größeren Anlagen, zum Beispiel eine Kombination aus Pellet- und Gasheizung oder Wärmepumpe und Pelletkessel.
Heizkostenvergleich: Heizöl günstiger als Erdgas

Heizkostenvergleich: Heizöl günstiger als Erdgas

Im vergangenen Jahr konnten sich viele Haushalte über gesunkene Energiekosten freuen. Vergleichsweise günstig war Wärme in ölbeheizten Gebäuden zu bekommen. Während der Erdgaspreis im Jahresmittel nur ein Prozent geringer ausfiel als im Vorjahr, sank der Ölpreis im Jahresmittel-Vergleich zum Vorjahr mit 28 Prozent deutlich. Und auch im Fünf-Jahres-Vergleich schneidet die Ölheizung gut ab. Wer in den vergangenen fünf Jahren jeweils 3.000 Liter Heizöl verbrauchte, um damit sein Haus zu erwärmen, zahlte dafür durchschnittlich 1.771 Euro pro Jahr. Für eine vergleichbare Menge Erdgas wurden jährlich etwa 2.061 Euro fällig. Das zeigt eine Auswertung des Instituts für Wärme und Mobilität (IWO) auf Grundlage von Daten der Fachzeitschrift „Brennstoffspiegel“. Heizöl ist damit auch im Fünf-Jahres-Vergleich noch immer günstiger als Erdgas und Fernwärme. 2020 kostete eine Kilowattstunde Erdgas durchschnittlich 6,23 Cent. Eine Kilowattstunde Heizöl hingegen war schon für 4,66 Cent zu haben. Die durchschnittlichen Energiekosten pro Jahr von 2016 bis 2020: 1.771 Euro kosteten Ölheizer 3.000 Liter Heizöl im Jahr, am teuersten war in diesem Vergleich die vergleichbare Energiemenge Fernwärme mit 2.405 Euro. Für das laufende Jahr werden auf fossile Energieträger zusätzlich CO2-Preise erhoben. Das gilt sowohl für Benzin und Diesel als auch für Heizöl und Erdgas. Während für Erdgas rund 0,55 Cent pro Kilowattstunde mehr fällig werden, wird die Preissteigerung durch die CO2-Bepreisung bei Heizöl bei rund 8 Cent pro Liter liegen. Umgerechnet wird eine Kilowattstunde Wärme, die mit Heizöl erzeugt wird, rund 0,75 Cent teurer. Die Unterschiede sind also relativ gering und liegen beim Heizöl innerhalb der gewohnten Preisschwankungen.
Heizung und Warmwasserproduktion

Heizung und Warmwasserproduktion

erarbeitet, die nachhaltig, effizient und zukunftsweisend für Wärme sorgen. Zuerst gilt es die richtige Form
Regelmäßige Heizungswartung spart zusätzlich Heizkosten

Regelmäßige Heizungswartung spart zusätzlich Heizkosten

Mit der turnusmäßigen Entlüftung Ihrer Heizkörper können Sie die Effizienz Ihrer Heizung steigern und Heizkosten sparen. Die regelmäßige Wartung von Heizkessel, Heizungspumpe, Ventilen, Thermostaten und Heizkörpern durch den Fachmann kann Ihre Heizkosten weiter senken und sorgt für eine lange Lebensdauer Ihrer Buderus Heizung. Über die Händlersuche finden Sie schnell einen kompetenten Buderus Partner für die Heizungswartung in Ihrer Nähe! Wichtig: Durch nicht ordentlich entlüftete Heizungen können sich der Energiebedarf Ihrer Heizung und die Energiekosten um bis zu 15 % erhöhen!
Mobile Vacuum System MVS 302

Mobile Vacuum System MVS 302

Absauganlage, MVS 302 komplett mit einer Sonde Die mobile Vakuum-Station MVS 302 ist eine Anlage, mit der Gasnester im Straßenkörper abgesaugt werden können. Zur kontinuierlichen Messung der noch im Untergrund vorhandenen Gaskonzentrationen ist es möglich, ein Gasspürgerät an die Anlage anzuschließen. Die Vakuum-Station eignet sich auch zur Prüfung und Sanierung von Schwergasleckstellen. Die mobile Vakuum-Station kann mit bis zu drei Absaugsonden gleichzeitig betrieben werden, um Gasnester aus dem Straßenkörper abzusaugen. Zur Überprüfung der noch im Untergrund vorhandenen Gaskonzentration kann ein Gasspürgerät, z.B. das GM 3100 von Schütz, angeschlossen werden. Die Handhabung der Vakuum-Station ist einfach und komfortabel. Durch ein zweistufiges Filtersystem werden Wasser und Schmutz zurückgehalten. Der Filterwechsel kann einfach und mit nur wenigen Handgriffen ausgeführt werden. Mit der Vakuum-Station MVS 302 wurden in Vergleichsmessungen sehr gute Ergebnisse erzielt. Die Abdichtung der Bohrlöcher ist mittels Dichtkegel immer garantiert. Natürlich sind die Sondenspitzen auch für andere Bohrdurchmesser verfügbar. Lieferumfang: MVS 302 Eine Absaugsonde (max 3 Stück) Kontrollzertifikat Betriebsanleitung Zubehör: 201.823 Sonde für kleinere Bohrungen (d=8mm) 201.606 Weiterer Absaugsonden (max. 3 Sonden anschliessbar) 204.361 Adapter für Geräte mit 20er Anschlusskupplung 204.442 MVS302 Teleskopanbausatz komplett Mit dem Abluftteleskop, können die evtl vorhandenen Gasspuren besser verteilt werden. Besonders in Fusgängerzonen ist dies empfehlenswert. Durch die hohe Saugleistung der Absauganlage wird die im Erdreich vorhandenen Gaskonzentration bereits sehr stark verdünnt. Evtl kann das Gas dennoch gerochen werden, mit dem Abluftteleskop nicht mehr. Je nach Anforderung kann das Abluftteleskop schnell eingeklickt werden. Gewicht: 33 kg Abmessung LxBxH: 32x47x65cm Nennspannung: 230 V - 50 Hz Motorleistung: 0,5 KW Fördermenge: 14 m3 / h Vakuum: ca. 850 mbar
Wirklich Gewerbegas

Wirklich Gewerbegas

Gewerbegas-Tarif mit 100 % Biogas aus erneuerbaren Quelle. Erhältlich in den drei Ökogas-Varianten Klassik, Vegan und GEG. Zertifiziert von TÜV Nord; Platz 1 in der Utopia-Bestenliste. In Sachen Nachhaltigkeit machen wir keine Abstriche. Das heißt: Alle Wirklich Ökogas-Varianten sind komplett frei von fossilem Erdgas. Sie basieren zu 100 % auf biogenen Rest- und Abfallstoffen oder auf pflanzlichen Quellen. Und natürlich investieren wir für jede Kilowattstunde zusätzlich in den Ausbau erneuerbarer Energien.
Wärmepumpe Erdwärme

Wärmepumpe Erdwärme

Die Sole/Wasser- und Wasser/Wasser-Wärmepumpen gewinnen wertvolle Energie aus dem Erdreich oder dem Grundwasser. Die Wärmepumpe nutzt natürliche Wärme aus dem Untergrund. Unter Einsatz von Strom als Antriebsenergie erzeugt die Wärmepumpe daraus wertvolle Energie für die Heizung und die Warmwasserbereitung. Aus 1 Kilowatt Strom entstehen so 4,5 bis 6,6 Kilowatt Wärme. Man kann Vorlauftemperaturen von 62 °C bis zu 70 °C erzielen. Damit eignet sie sich die Wärmepumpe auch für den Betrieb mit konventionellen Radiatoren – wichtig bei der Altbau-Sanierung. Funktionsweise Vorteile Mit 20% Energieeinsatz 100% Wärme Hoher energetischer Wirkungsgrad (COP) durch innovative Technologie Konstant hoher Wirkungsgrad durch Nutzung der Energie aus dem Erdreich oder Grundwasser Stromkosteneinsparung durch Hocheffizienzpumpen Energieverbrauchsanzeige für permanente Kostenkontrolle Komplett und flexibel Schnelle Installation durch montagefertige Komplett- Anlagen Smartphone-App zur einfachen Regelung von unterwegs und den Empfang von Anlagenmeldungen in Echtzeit Modernste Schnittstellenstandards zur Anbindung an Gebäudeautomation oder zukünftge Smart Grids Nutzung ökologischer Umweltenergie 80% saubere Umweltenergie aus 20% Strom Umweltfreundliche Energie aus Geothermie oder dem Grundwasser gewonnen CO2-neutral und besonders umweltfreundlich in Verbindung mit Ökostrom Einfache Anpassung der Betriebszeiten erleichtert energiebewusstes Heizen Hoher Wärmekomfort, leiser Betrieb Hoher Wärmekomfort durch Berücksichtigung der zukünftigen Aussentemperatur und Sonneneinstrahlung (aus Wettervorhersage) Angenehme Laufruhe durch schalloptimierten 3-fach gelagerten Aufbau Für Heizung und Warmwasser nutzbar Einfach kombinierbar mit Solar zur zusätzlichen Verbesserung der Ökobilanz Kostengünstige Kühlfunktion bei allen Modellen durch optionale Passiv-Kühlung
Wärmepumpe: Funktionsweise

Wärmepumpe: Funktionsweise

Das technische Prinzip einer Wärmepumpe entspricht dem eines Kühlschranks - nur umgekehrt. Bei einem Kühlschrank wird die Wärme von innen nach außen geleitet. Bei einer Wärmepumpe funktioniert das genau umgekehrt. Die Wärme von außen - z. B. aus der Erde - wird über das Heizsystem nach innen, in den Wohnraum, geführt. Um die Temperatur anzuheben, wird ein Kältemitteldampf verdichtet. So lange, bis die Temperatur für Heizung und Trinkwassererwärmung genügt. Für die Wärmeerzeugung wird beispielsweise der Umgebungsluft auf niedrigem Temperaturniveau Wärme entzogen und mit ihr ein bei niedriger Temperatur siedendes Arbeitsmittel (klimaverträgliches Arbeitsmittel wie R407 C) verdampft. Das zuvor flüssige Arbeitsmittel verlässt den Verdampfer (3) gasförmig. Das Gas wird in einem Verdichter (1) komprimiert und damit erwärmt. Das erwärmte Gas gibt die Wärme im Kondensator (2) an das Heizungswasser zur Gebäudebeheizung oder zur Trinkwasserbereitung ab und verflüssigt sich dabei wieder. Zuletzt wird das noch unter Druck stehende Arbeitsmittel in einem Expansionsventil (4) entspannt, und der Kreislauf beginnt von vorne
Wärmepumpe

Wärmepumpe

Wärme aus Strom* Entscheiden Sie sich für umweltfreundliche Wärmeerzeugung im eigenen Zuhause durch den Einsatz von Wärmepumpenanlagen, die die Energie aus lokalen Quellen wie Luft, Erde oder Wasser nutzen. Unsere Wärmepumpen gewährleisten nicht nur eine zuverlässige Warmwasserbereitung und effiziente Wärmeverteilung, sondern setzen auch auf eine nachhaltige, atom- und fossilfreie Wärmeversorgung. Im Rahmen unseres Projekts analysieren wir die Heizungsverteilung, um die optimale Effizienz und Kosteneffizienz der Wärmepumpe sicherzustellen. Mit über 15 Jahren Erfahrung im Bau von Erd- und Luftwärmepumpen versorgen wir Ein- und Mehrfamilienhäuser mit individuell geplanten Anlagen. In besonderen Fällen empfehlen wir hybride Anlagenkombinationen, die eine zuverlässige Wärmeversorgung gewährleisten.
Luft-Wasser Wärmepumpe (Innenaufstellung)

Luft-Wasser Wärmepumpe (Innenaufstellung)

Ihre Merkmale sind: + Praktisch überall einsetzbar + Bewilligungsfrei ( Baubewilligung vorbehalten ) + Kostengünstige Investition + Wertsteigerung Ihrer Liegenschaft + Unabhängig von fossilen Energiepreisen + Von Steuervorteilen profitieren – (heute nur noch geringe) Geräuschentwicklung – Leistungszahl ist abhängig von der Aussentemperatur – Begrenzte Lebensdauer
Sole / Wasser Wärmepumpe mit Flächenkollektor

Sole / Wasser Wärmepumpe mit Flächenkollektor

Bei dieser Bauart werden die Rohrleitungen in einer Tiefe von ca. 1,4 m und mit einem Abstand von ca. 60 cm vergraben. Ob das Wort Erdwärme bei dieser Bauart wirklich zutreffend ist, da gibt es die unterschiedlichsten Meinungen. Richtig ist in jedem Fall, dass dieses System die Sonne und den Regen für die Regeneration braucht. Die Größe des Kollektorfeldes berechnet sich aus der Bodenbeschaffenheit, der Feuchte und der Sonneneinstrahlung. Bei guter Auslegung hat der Flächenkollektor im September eine Bodentemperatur von ca. +10°C, über den Winter wird dem Boden meistens mehr Wärme entnommen als von unten nachströmt. Die meisten Flächenkollektoren haben im April ca. – 3°C. Mit Beendigung der Heizsaison wird der Wärmepumpenbetrieb eingestellt, im Frühjahr taut der Boden auf, und das Schmelzwasser versickert, mit jedem Regen wird der Kollektor wieder wärmer und erreicht somit wieder seine Ausgangstemperatur. Bei dieser Bauart wurden in der Vergangenheit die meisten Fehler gemacht, die Rohre wurden in einem zu engen Verlegeabstand eingebaut und es entstand eine durchgehende Eisplatte im Untergrund. Oft wurde dem warmen Regen der Weg zum Kollektor durch dichte Oberflächen verbaut. Manche Kollektoren waren einfach zu knapp berechnet. Die Wärmepumpe fordert aber die benötigte Entzugsleistung und kühlt den Boden aus. Eis isoliert, Wirkungsgrad und Wirtschaftlichkeit gehen verloren. Eine umfassende Beratung ist in jedem Fall unumgänglich! Vorteile Niedrige Betriebskosten Guter Wirkungsgrad Monovalenter Betrieb, keine Zusatzheizung notwendig Kühlen und Heizen möglich Nachteile Die Entzugsleistung ist von der Bodenqualität abhängig Anzeigepflichtig beim zuständigen Landratsamt Unbebaute Grundstückflächen notwendig Erd-, Stemm- und Baggerarbeiten notwendig
Luft-Wasser-Wärmepumpen eignen sich für fast jedes hochwertig sanierte oder neue Gebäud

Luft-Wasser-Wärmepumpen eignen sich für fast jedes hochwertig sanierte oder neue Gebäud

Luft-Wasser-Wärmepumpen eignen sich für fast jedes hochwertig sanierte oder neue Gebäude. Aber auch für eine Sanierung eignet sich diese Variante ideal.
Modulierende Luft/Wasser-Wärmepumpe MOZART Außenaufstellung

Modulierende Luft/Wasser-Wärmepumpe MOZART Außenaufstellung

Modulierende Leistung von 4,0 ... 16,0 kW (A2/W35) Hoher COP 4,22 (A2/W35) Geringe Schallemissionen inkl. zusätzlicher Flüstermodus Intuitive Bedienung durch Touch-Display und webbasierter Fernbedienung Integrierte Wärmemengenzählung
Bewährt: Brennwerttechnik kombiniert mit Trinkwasser-Wärmepumpe

Bewährt: Brennwerttechnik kombiniert mit Trinkwasser-Wärmepumpe

Wärme aus regenerativen Ressourcen kommt auch ganz einfach aus der Luft. Die neue Weishaupt Trinkwasser-Wärmepumpe ist eine clevere Alternative zur herkömmlichen Warmwasserbereitung, denn sie arbeitet völlig unabhängig vom eigentlichen Heizsystem. Diese Lösung ist günstig in der Anschaffung, leicht zu installieren und bietet zusätzlich noch die Möglichkeit, mit der Abluft einen benachbarten Kellerraum zu kühlen. Eine bemerkenswerte Kombination, die auch wirtschaftlich mit anderen Alternativen mithalten kann.
Erdwärmepumpe

Erdwärmepumpe

Bei der Erdwärme entzieht die Wärmepumpe der Erde Wärme. Diese kostenlose Wärme wird von der Wärmepumpe für die Heizung und das warme Dusch- und Badewasser verwendet. Der Vorteil der Erdwärme liegt in den konstanten Temperaturen von 8-15 °C – auch im Winter. Diese relativ hohen Temperaturen führen zu einer deutlich höheren Effizienz und damit zu extrem niedrigen Heizkosten. Zusätzlich kann Ihr Haus mit dieser Energie im Sommer ohne großen Aufwand gekühlt werden. Geräusche entstehen – im Vergleich zu Luftwärmepumpen – nicht. Der Nachteil der Erdwärme liegt in der aufwändigeren Erschließung durch den Aushub für die Erdkollektoren oder dem Bohren von Erdsonden. Zur weiteren Effizienzsteigerung können Sie eine Luftwärmepumpe gerne mit einer unserer effipump-Solaranlagen kombinieren und dadurch die Effizienz weiter steigern und Ihre Heizkosten senken.
WÄRMEPUMPEN

WÄRMEPUMPEN

Energiekosten sparen mit einer Wärmepumpe Die heutige Zeit ist geprägt von stetig steigenden Energiekosten und zunehmender Umweltbelastungen. Es ist daher von zentraler Bedeutung, auch beim Thema Heizen niedrige Energiekosten, Ressourcenschonung und maximale Umweltfreundlichkeit im Blick zu haben. Ein Energielieferant, der diese Eigenschaften vereint, ist die Wärmepumpe. Sie erzeugt aus 25% zugeführter Energie 100% Heizleistung. Dank einem einfachen, aber funktionierendem Prinzip und Hightech entzieht eine Wärmepumpe der Umwelt über Wärmetauschersysteme Wärme. Diese Wärme wird innerhalb der Wärmepumpe in einem so genannten Kältekreislauf auf ein höheres Temperaturniveau gebracht und kann somit zum Heizen genutzt werden. Die Funktionsweise der Wärmepumpe ist dabei identisch mit der eines altbekannten Alltagsgerätes: Dem Kühlschrank. Während der Kühlschrank allerdings seinem Innenraum die Wärme entzieht und nach draußen abgibt, entzieht die Wärmepumpe dem Außenbereich die Wärme und gibt sie als Heizenergie an das Haus ab. Die Funktion läuft also genau umgekehrt ab. Sie haben Interesse an einer Wärmepumpe? Gerne beraten wir Sie, ob eine Wärmepumpe in Ihrem Eigenheim möglich ist.
Wasser/Wasser Wärmepumpen

Wasser/Wasser Wärmepumpen

Wasser/Wasser-Wärmepumpen nutzen das Grundwasser als Wärmequelle. Über einen Saugbrunnen gelangt das Grundwasser mit konstanten 8-12 °C zur Wärmepumpe. Nachdem das Grundwasser einen Teil seiner Wärme über den Wärmetauscher an die Wärmepumpe abgegeben hat, gelangt das abgekühlte Wasser über den Schluckbrunnen zurück in das Erdreich. Dafür erforderlich sind eine gewisse Grundwasserqualität (Eisen und Mangan Grenzwert, Wasseranalyse) und Genehmigung der Unteren Wasserbehörde. Förderung für Wärmepumpen